PCB manufacturing

PCB manufacturing

PCB manufacturing consists of many steps.
PCB computer aided manufacturing

Manufacturers never use the Gerber or Excellon files directly on their equipment, but always read them into their computer aided manufacturing (CAM) system. PCBs cannot be manufactured professionally without a CAM system, which performs the following functions:

Input of the Gerber data
Verify the data; optionally DFM
Compensate for deviations in the manufacturing processes (e.g. scaling to compensate for distortions during lamination)
Panelize
Output of the digital tools (layer images, drill files, AOI data, electrical test files,.)

Panelization

Panelization is a procedure used to handle PCBs which would otherwise be too small to process. A number of identical circuits are printed onto a larger board (the panel) which can then be handled in the normal way. In some cases we may have multiple different designs of PCB in a panel, for example a product has three different boards and all of these boards are repeated 10 times in a panel, so we have total of thirty boards (three different types) in the panel. The panel is broken apart into individual PCBs when all other processing is complete. Separating the individual PCBs is frequently aided by drilling or routing perforations along the boundaries of the individual circuits, much like a sheet of postage stamps. Another method, which takes less space, is to cut V-shaped grooves across the full dimension of the panel. The individual PCBs can then be broken apart along this line of weakness.

The process of removing individual PCBs from a larger board is called Depaneling. While drilled/routed perforations and grooves were common for a number of years, today this is often done by lasers, which cut the board with no contact. This reduces the stresses on the fragile circuits caused by torque. This method is often completely automated with full boards entering the laser depaneling machine via conveyor, being cut into individual pieces by laser, and leaving the system via conveyor, and sometimes stacked, on the other side.

Copper patterning

The pattern in the manufacturer’s CAM system is usually output on a photomask (photo-tool, film) by a photoplotter and replicated via silk screen printing or by exposing on a photo-sensitive photoresist coating. Direct imaging techniques are sometimes used for high-resolution requirements.

Subtractive, additive and semi-additive processes

Subtractive methods remove copper from an entirely copper-coated board to leave only the desired copper pattern:

1. Silk screen printing uses etch-resistant inks to protect the copper foil. Subsequent etching removes the unwanted copper. Alternatively, the ink may be conductive, printed on a blank (non-conductive) board. The latter technique is also used in the manufacture of hybrid circuits.
2. Photoengraving uses a photomask and developer to selectively remove a photoresist coating. The remaining photoresist protects the copper foil. Subsequent etching removes the unwanted copper.
3. PCB milling uses a two or three-axis mechanical milling system to mill away the copper foil from the substrate. A PCB milling machine (referred to as a ‘PCB Prototyper’) operates in a similar way to a plotter, receiving commands from the host software that control the position of the milling head in the x, y, and (if relevant) z axis. Data to drive the Prototyper is extracted from files generated in PCB design software and stored in HPGL or Gerber file format.

In additive methods the pattern is electroplated onto a bare substrate using a complex process. The advantage of the additive method is that less material is needed and less waste is produced. In the full additive process the bare laminate is covered with a photosensitive film which is imaged (exposed to light through a mask and then developed which removes the unexposed film). The exposed areas are sensitized in a chemical bath, usually containing palladium and similar to that used for through hole plating which makes the exposed area capable of bonding metal ions. The laminate is then plated with copper in the sensitized areas. When the mask is stripped, the PCB is finished.

Semi-additive is the most common process: The unpatterned board has a thin layer of copper already on it. A reverse mask is then applied. (Unlike a subtractive process mask, this mask exposes those parts of the substrate that will eventually become the traces.) Additional copper is then plated onto the board in the unmasked areas; copper may be plated to any desired weight. Tin-lead or other surface platings are then applied. The mask is stripped away and a brief etching step removes the now-exposed bare original copper laminate from the board, isolating the individual traces. Some single-sided boards which have plated-through holes are made in this way. General Electric made consumer radio sets in the late 1960s using additive boards.

The (semi-)additive process is commonly used for multi-layer boards as it facilitates the plating-through of the holes to produce conductive vias in the circuit board.

Patterning method by volume

The method chosen depends on the number of boards to be produced.
Large volume

Silk screen printing–the main commercial method.
Photographic methods–used when fine linewidths are required.

Small volume

Print onto transparent film and use as photomask along with photo-sensitized boards. (i.e., pre-sensitized boards), then etch. (Alternatively, use a film photoplotter).
Laser resist ablation: Spray black paint onto copper clad laminate, place into CNC laser plotter. The laser raster-scans the PCB and ablates (vaporizes) the paint where no resist is wanted. Etch. (Note: laser copper ablation is rarely used and is considered experimental.[clarification needed])
Use a CNC-mill with a spade-shaped (i.e., a flat-ended cone) cutter or miniature end-mill to rout away the undesired copper, leaving only the traces.

Hobbyist

Laser-printed resist: Laser-print onto transparency film, heat-transfer with an iron or modified laminator onto bare laminate, touch up with a marker, then etch.
Vinyl film and resist, non-washable marker, some other methods. Labor-intensive, only suitable for single boards

Chemical etching

Chemical etching is usually done with ammonium persulfate or ferric chloride. For PTH (plated-through holes), additional steps of electroless deposition are done after the holes are drilled, then copper is electroplated to build up the thickness, the boards are screened, and plated with tin/lead. The tin/lead becomes the resist leaving the bare copper to be etched away.

The simplest method, used for small-scale production and often by hobbyists, is immersion etching, in which the board is submerged in etching solution such as ferric chloride. Compared with methods used for mass production, the etching time is long. Heat and agitation can be applied to the bath to speed the etching rate. In bubble etching, air is passed through the etchant bath to agitate the solution and speed up etching. Splash etching uses a motor-driven paddle to splash boards with etchant; the process has become commercially obsolete since it is not as fast as spray etching. In spray etching, the etchant solution is distributed over the boards by nozzles, and recirculated by pumps. Adjustment of the nozzle pattern, flow rate, temperature, and etchant composition gives predictable control of etching rates and high production rates.

As more copper is consumed from the boards, the etchant becomes saturated and less effective; different etchants have different capacities for copper, with some as high as 150 grams of copper per litre of solution. In commercial use, etchants can be regenerated to restore their activity, and the dissolved copper recovered and sold. Small-scale etching requires attention to disposal of used etchant, which is corrosive and toxic due to its metal content.

The etchant removes copper on all surfaces exposed by the resist. “Undercut” occurs when etchant attacks the thin edge of copper under the resist; this can reduce conductor widths and cause open-circuits. Careful control of etch time is required to prevent undercut. Where metallic plating is used as a resist, it can “overhang” which can cause short-circuits between adjacent traces when closely spaced. Overhang can be removed by wire-brushing the board after etching.
Inner layer automated optical inspection (AOI)

The inner layers are given a complete machine inspection before lamination because afterwards mistakes cannot be corrected. The automatic optical inspection system scans the board and compares it with the digital image generated from the original design data.

Lamination

Multi-layer printed circuit boards have trace layers inside the board. One way to make a 4-layer PCB is to use a two-sided copper-clad laminate, etch the circuitry on both sides, then laminate to the top and bottom prepreg and copper foil. Lamination is done by placing the stack of materials in a press and applying pressure and heat for a period of time. This results in an inseparable one piece product. It is then drilled, plated, and etched again to get traces on top and bottom layers. Finally the PCB is covered with solder mask, marking legend, and a surface finish may be applied. Multi-layer PCBs allow for much higher component density.

Drilling

Holes through a PCB are typically drilled with small-diameter drill bits made of solid coated tungsten carbide. Coated tungsten carbide is recommended since many board materials are very abrasive and drilling must be high RPM and high feed to be cost effective. Drill bits must also remain sharp so as not to mar or tear the traces. Drilling with high-speed-steel is simply not feasible since the drill bits will dull quickly and thus tear the copper and ruin the boards. The drilling is performed by automated drilling machines with placement controlled by a drill tape or drill file. These computer-generated files are also called numerically controlled drill (NCD) files or “Excellon files”. The drill file describes the location and size of each drilled hole. These holes are often filled with annular rings (hollow rivets) to create vias. Vias allow the electrical and thermal connection of conductors on opposite sides of the PCB.

When very small vias are required, drilling with mechanical bits is costly because of high rates of wear and breakage. In this case, the vias may be laser drilled — evaporated by lasers. Laser-drilled vias typically have an inferior surface finish inside the hole. These holes are called micro vias.

It is also possible with controlled-depth drilling, laser drilling, or by pre-drilling the individual sheets of the PCB before lamination, to produce holes that connect only some of the copper layers, rather than passing through the entire board. These holes are called blind vias when they connect an internal copper layer to an outer layer, or buried vias when they connect two or more internal copper layers and no outer layers.

The hole walls for boards with 2 or more layers can be made conductive and then electroplated with copper to form plated-through holes. These holes electrically connect the conducting layers of the PCB. For multilayer boards, those with 3 layers or more, drilling typically produces a smear of the high temperature decomposition products of bonding agent in the laminate system. Before the holes can be plated through, this smear must be removed by a chemical de-smear process, or by plasma-etch. The de-smear process ensures that a good connection is made to the copper layers when the hole is plated through. On high reliability boards a process called etch-back is performed chemically with a potassium permanganate based etchant or plasma. The etch-back removes resin and the glass fibers so that the copper layers extend into the hole and as the hole is plated become integral with the deposited copper.
Plating and coating

PCBs are plated with solder, tin, or gold over nickel as a resist for etching away the unneeded underlying copper.

After PCBs are etched and then rinsed with water, the solder mask is applied, and then any exposed copper is coated with solder, nickel/gold, or some other anti-corrosion coating.

Matte solder is usually fused to provide a better bonding surface or stripped to bare copper. Treatments, such as benzimidazolethiol, prevent surface oxidation of bare copper. The places to which components will be mounted are typically plated, because untreated bare copper oxidizes quickly, and therefore is not readily solderable. Traditionally, any exposed copper was coated with solder by hot air solder levelling (HASL). The HASL finish prevents oxidation from the underlying copper, thereby guaranteeing a solderable surface. This solder was a tin-lead alloy, however new solder compounds are now used to achieve compliance with the RoHS directive in the EU and US, which restricts the use of lead. One of these lead-free compounds is SN100CL, made up of 99.3% tin, 0.7% copper, 0.05% nickel, and a nominal of 60ppm germanium.

It is important to use solder compatible with both the PCB and the parts used. An example is Ball Grid Array (BGA) using tin-lead solder balls for connections losing their balls on bare copper traces or using lead-free solder paste.

Other platings used are OSP (organic surface protectant), immersion silver (IAg), immersion tin, electroless nickel with immersion gold coating (ENIG), electroless nickel electroless palladium immersion gold (ENEPIG) and direct gold plating (over nickel). Edge connectors, placed along one edge of some boards, are often nickel plated then gold plated. Another coating consideration is rapid diffusion of coating metal into Tin solder. Tin forms intermetallics such as Cu5Sn6 and Ag3Cu that dissolve into the Tin liquidus or solidus(@50C), stripping surface coating or leaving voids.

Electrochemical migration (ECM) is the growth of conductive metal filaments on or in a printed circuit board (PCB) under the influence of a DC voltage bias. Silver, zinc, and aluminum are known to grow whiskers under the influence of an electric field. Silver also grows conducting surface paths in the presence of halide and other ions, making it a poor choice for electronics use. Tin will grow “whiskers” due to tension in the plated surface. Tin-Lead or Solder plating also grows whiskers, only reduced by the percentage Tin replaced. Reflow to melt solder or tin plate to relieve surface stress lowers whisker incidence. Another coating issue is tin pest, the transformation of tin to a powdery allotrope at low temperature.
Solder resist application

Areas that should not be soldered may be covered with solder resist (solder mask). One of the most common solder resists used today is called LPI (liquid photoimageable). A photo sensitive coating is applied to the surface of the PWB, then exposed to light through the solder mask image film, and finally developed where the unexposed areas are washed away. Dry film solder mask is similar to the dry film used to image the PWB for plating or etching. After being laminated to the PWB surface it is imaged and develop as LPI. Once common but no longer commonly used because of its low accuracy and resolution is to screen print epoxy ink. Solder resist also provides protection from the environment.
Legend printing

A legend is often printed on one or both sides of the PCB. It contains the component designators, switch settings, test points and other indications helpful in assembling, testing and servicing the circuit board.

There are three methods to print the legend.

Silk screen printing epoxy ink was the established method. It was so common that legend is often misnamed silk or silkscreen.
Liquid photo imaging is a more accurate method than screen printing.
Ink jet printing is new but increasingly used. Ink jet can print variable data such as a text or bar code with a serial number.

Bare-board test

Unpopulated boards may be subjected to a bare-board test where each circuit connection (as defined in a netlist) is verified as correct on the finished board. For high-volume production, a bed of nails tester, a fixture or a rigid needle adapter is used to make contact with copper lands or holes on one or both sides of the board to facilitate testing. A computer will instruct the electrical test unit to apply a small voltage to each contact point on the bed-of-nails as required, and verify that such voltage appears at other appropriate contact points. A “short” on a board would be a connection where there should not be one; an “open” is between two points that should be connected but are not. For small- or medium-volume boards, flying probe and flying-grid testers use moving test heads to make contact with the copper/silver/gold/solder lands or holes to verify the electrical connectivity of the board under test. Another method for testing is industrial CT scanning, which can generate a 3D rendering of the board along with 2D image slices and can show details such as soldered paths and connections.

Assembly

After the printed circuit board (PCB) is completed, electronic components must be attached to form a functional printed circuit assembly, or PCA (sometimes called a “printed circuit board assembly” PCBA). In through-hole construction, component leads are inserted in holes. In surface-mount (SMT – surface mount technology) construction, the components are placed on pads or lands on the outer surfaces of the PCB. In both kinds of construction, component leads are electrically and mechanically fixed to the board with a molten metal solder.

There are a variety of soldering techniques used to attach components to a PCB. High volume production is usually done with SMT placement machine and bulk wave soldering or reflow ovens, but skilled technicians are able to solder very tiny parts (for instance 0201 packages which are 0.02 in. by 0.01 in.) by hand under a microscope, using tweezers and a fine tip soldering iron for small volume prototypes. Some parts may be extremely difficult to solder by hand, such as BGA packages.

Often, through-hole and surface-mount construction must be combined in a single assembly because some required components are available only in surface-mount packages, while others are available only in through-hole packages. Another reason to use both methods is that through-hole mounting can provide needed strength for components likely to endure physical stress, while components that are expected to go untouched will take up less space using surface-mount techniques. For further comparison, see the SMT page.

After the board has been populated it may be tested in a variety of ways:

While the power is off, visual inspection, automated optical inspection. JEDEC guidelines for PCB component placement, soldering, and inspection are commonly used to maintain quality control in this stage of PCB manufacturing.
While the power is off, analog signature analysis, power-off testing.
While the power is on, in-circuit test, where physical measurements (for example, voltage) can be done.
While the power is on, functional test, just checking if the PCB does what it had been designed to do.

To facilitate these tests, PCBs may be designed with extra pads to make temporary connections. Sometimes these pads must be isolated with resistors. The in-circuit test may also exercise boundary scan test features of some components. In-circuit test systems may also be used to program nonvolatile memory components on the board.

In boundary scan testing, test circuits integrated into various ICs on the board form temporary connections between the PCB traces to test that the ICs are mounted correctly. Boundary scan testing requires that all the ICs to be tested use a standard test configuration procedure, the most common one being the Joint Test Action Group (JTAG) standard. The JTAG test architecture provides a means to test interconnects between integrated circuits on a board without using physical test probes. JTAG tool vendors provide various types of stimulus and sophisticated algorithms, not only to detect the failing nets, but also to isolate the faults to specific nets, devices, and pins.

When boards fail the test, technicians may desolder and replace failed components, a task known as rework.

Protection and packaging

PCBs intended for extreme environments often have a conformal coating, which is applied by dipping or spraying after the components have been soldered. The coat prevents corrosion and leakage currents or shorting due to condensation. The earliest conformal coats were wax; modern conformal coats are usually dips of dilute solutions of silicone rubber, polyurethane, acrylic, or epoxy. Another technique for applying a conformal coating is for plastic to be sputtered onto the PCB in a vacuum chamber. The chief disadvantage of conformal coatings is that servicing of the board is rendered extremely difficult.

Many assembled PCBs are static sensitive, and therefore must be placed in antistatic bags during transport. When handling these boards, the user must be grounded (earthed). Improper handling techniques might transmit an accumulated static charge through the board, damaging or destroying components. Even bare boards are sometimes static sensitive. Traces have become so fine that it’s quite possible to blow an etch off the board (or change its characteristics) with a static charge. This is especially true on non-traditional PCBs such as MCMs and microwave PCBs.

tmliir Apr 25, 2012 PCB 0 Comment Read More
  • Require RFQ of PCB, PCB Assembly?

    Contact us today!

    support@pcba-bright.com

  • Product Categories

error: Content is protected !!